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LE’ITER TO THE EDITOR 

On the surface properties of two-dmensional percolation 
clusters 
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Abstract The two-dimensional site percolorion problem is ~Ndied by transfer-matrix methods 
on finite-width ships with free boundary conditions. The relationship between correlation- 
length amplitndes and critical indices, predicted by conformdinvariance, allows a very precise 
determination of the surface decay-of-correlations exponent, qs = 0.6664 & 0.0008, consisfent 
witb the analytical value qr = 213. It is fonnd that a special transition does not occm in the case, 
corroborating earlier series results. At the ordinary transition, numerical estimates are consistent 
with the exact value y, = - I  for the irrelevant exponent. 

Finitesize scaling concepts are a powerful tool for the determination of critical properties 
at phase transitions [I], especially when coupled to phenomenological renormalization [2] 
and conformal invariance [3] ideas. Here we present results from numerical transfer-mahx 
calculations of the correlation length, and quantities derived therefrom, for site percolation 
on infinite strips with free boundary conditions (FBC). The use of FBC allows one to assess 
surface critical properties, including so-called special and surface transitions [4] when they 
occur. 

Our transfer-matrix formulation of the percolation problem relies on the direct 
application of connectivity concepts 151, as opposed to taking the s + 1 limit of the s-state 
Potts model [6]. which corresponds to bond percolation (and should then, by universality, 
give the same exponents as for the site problem). While the latter approach benefits from 
being a systematic expansion in terms of Whitney polynomials, it is devised for general, 
continuous s and thus carries a high degree of inherent complexity. As shown in earlier 
work [5,7,8] and below, the geometric picture based on cluster connectivity allows a 
straightforward algorithm to he built, from which a nicely extrapolating sequence of finite- 
size estimates is extracted. 

We use strips of width L < 10 sites, both for square and triangular lattices. This is the 
same maximum width reached with periodic boundary conditions (PBC) [7,8], though in the 
present case lower symmetry implies that the matrices are of considerably larger dimension 
than on a cylindrical geometry. First, standard phenomenological renormalization (PR) [2] 
is performed on the site occupation probability p between strips of consecutive widths, from 
which estimates of the critical concentration pc ,  the temperature-lie exponent yo and the 
surface decay-of-correlations exponent, vs are obtained. Altemative finite-size sequences 
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for qs are produced by setting p at the exact (or extrapolated) pc. We then search for a 
special transition, by introducing a distinct probability ps for site occupation along the strip 
boundaries. A two-parameter PR analysis is carried out, by comparing correlation lengths 
on three strips of consecutive widths 19-11]. Only one non-trivial fixed point, shown to 
correspond :o an ordinary transition, is found upon numerical examination of the recursion 
relations. No evidence is found for the existence of a multicritical point related to a special, 
or surface, transition. 

The exponent that governs the decay of correlations alongthe surface of a semi-infinite 
plane at criticality, qs, is related to the correlation length on a strip with FBC by 

a result from conformal invariance [12,13]. Note that for a triangular lattice with FBC the 
strip width L = N&/2, where N is the number of sites across the strip. 

Corrections to scaling must be dealt with, since e.g. equation (1) is expected to be 
valid only asymptotically. Throughout this work, extrapolations toward L -+ cc have 
been done using the BulirschStoer (BST) algorithm [14,15]. As extensively discussed 
elsewhere 1151, whenever the leading correction-to-scaling exponent o is not known apriori 
BST extrapolations rely on keeping it as a free parameter within an interval guessed to be 
reasonable. Central estimates and error bars are evaluated self-consistently by selecting the 
range of o for which overall fluctuations are minimized. In the following we have allowed 
0.45 < o < 2.4 for all quantities, as the most likely candidates in the case are o = 1 and 
2 (see below). 

We implement standard, one-parameter, PR in the usual way by looking for the fixed 
point p* of the implicit recursion relation: 

where t ~ ( p )  = -1 / lnA~(p)  is given in terms of the largest eigenvalue & , ( p )  of the 
column-to-column transfer matrix 151; p' is thus a finite-size estimate of pc. At the fixed 
point, the temperature-like exponent y p  = l / u  is evaluated by taking suitable derivatives [I]. 
For consistency, qs is obtained from equation (1) with 

Our results are shown in table 1, where the values of p* and y, for L = 3 and 4 on the 
square lattice have been obtained previously 151. The amplitude of finitesize corrections 
is much larger than for the corresponding cases of PBC (see e.g. table 1 in [SI). However, 
the finite-lattice sequences are generally well-behaved, allowing for smooth extrapolations. 
Comparing OUT extrapolated estimates for p c  and yp  with the well-known respective values 
provides a good overall check of the reliability of our procedures. For the square lattice 
our pc agrees very well with, but is less precise than, the best estimate for the percolation 
threshold p E  = 0.59274510.000002 [16]. A similar picture holds for the comparison with 
the exact pc = 112 for the triangular lattice, and y, = 314 (both lattices). 

Turning now to qs, table 1 provides a direct test of the prediction qs = 213 1131, 
previously confirmed only indirectly via the series result y~ = 2.10 1 0.02 [17] which, 
together with the scaling relation 2yl = y + v(2 - q.) and the exact values y = 43/18 and 
U = 4/3, gives qs = 0.6410.03 [I31 . Though the agreement is generally very satisfactory, 
the sequence for the triangular lattice seems to extrapolate towards a region slightly above 
z3. 

In order to improve the quality of our estimates [7, 181, we have also generated 
sequences of finite-size data for qs by setting p at the best available (or exact) value of 
pc. For comparison with the corresponding data in [SI for the bulk exponent q, given by 

calculated at p*. 
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Table 1. Results from one-parameter PR. Uncertainties in the last quoted digits are shown in 
uarentheses. Exhapalations obtained by the BST algorithm with correction-toscaling exponent . .  i in ranges shown: Expected values are exact, unless otherwise noted. 

Square Triangular 
.~ ~ ~~~~ ~ 

L P* m llJ P' YP u s  

3 0.671 130 ~ 0.662822 0.290469 0.573092 0.665596~ 0.337283 
4 0.644177 0.676427 0.352 082 0.547377 0.681 787 0.393936 
5 0.629524 0.606306 0.394701 0.533471 0.692689 0.434325 
6 0.620566 0.693798 0.427621 0.525062 0,700557 0.464391 
7 0.614644 0.699685 0.453367 0.519561 0.706500 0.487600 
8 0.610502 0.704439 0.474064 0.515749 0.711 147 0.506047 
9 0.607478 0.708362 0.491 070 ?.SI2990 0.714869 0.521 047 

10 0.605 197 0.711655 0.505297 0.510928 0.717880 0.533458 

Exhapdated 0.59735) 0.750(2) 0.666(3) 0.5005(2) 0.750(2) 0.676(3) 

a Monte Carlo 1161. 

Expected 0.592745(2)' 314 W3b 1/2 314 u3b 

0 1.50(50) 1.10(10) l.OO(5) 2.00(10) l.IO(10) 1.05(5) 

Predicted by conformal invariance [13]. 

Table 2. Results for qs and 0 obtained by setting p = 0.592745 (square) or p = 112 (triangular 
lattice). Uncertainties in the last quoted digits are shown in parentheses. Extrapolations obtained 
by the EST algorithm with correctian-lo-scaling exponent o in m g e s  shown. Expected values 
are exact, unless otherwise noted. 

square Triangular 

L Ils 11 Ilr 11 

2 0.4326951882 
3 0.484810 1732 
4 0.517 492 502 6 
5 0.540029 1833 
6 0.5565576800 
7 0.5692194471 
8 0.579 239 953 I 
9 0.5873733739 

10 0.594 1102466 

0.216347594 1 
0.213 059500'8 
0.2125576128 
0.21~14673276 
0.210737071 4 
0.210 223288 6 
0.209 856 476 8 
0.209 586 803 3 
0.2093833099 

0.4673843349 
0.513 592717 0 
0.542 352 678 7 
0.561 983 I31 5 
0.5762429521 
0.5870747896 ' 

0.5955841200 
0.602 447 280 9 
0.608 102683 2 

0.$14765825 
0.211 1933048 
0.2103549509 
0.209 740 964 3 
0.2093492678 
0.2090956127 
0.208 9245599 
0.208 8045137 
0.208 717 3009 

Expected 2/3' 5/24 2t3' 5/24 
Exharmfated 0.6664(4) 0.208 35(21 0.665(1) 0.20033m . .  
0 l.OO(5) 1.90(10) ' l.OO(l0) 2.00(5) 

Predicted by conformal invariance 1131 

q =~ L/z$'(pC) [I21 (where is related to the largest eigenvalue of the traisfer matrix 
with PBC and, in [SI, is calculated at the respective p a  as in table I), we have done the 
same for PBC The results are displayed in table 2. 

For the square lattice~the central estimate of pc  from [16] has been used. Had the 
respective error bars been taken into account, this would typically give rise to uncertainties 
in the sixth decimal place of qs or q. BST extrapolations of the tmncated values .point 
essentially towards the same limits exhibited in table 2 (though with error bars roughly 
doubled), which shows that the corresponding sequences are rather robust 

The amplitude of finite-size corrections is much larger for FBC than for PBC, a 
trend already noticed in the discussion of table 1. Comparison with the final estimate 
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q = 0.2088 &to.oOo8 of [SI Suggests that, for PBC at least, setting p = pc  rather than at 
the approximate p' reduces error bars by one order of magnitude. This latter statement 
assumes that both BST and the extrapolation procedures described in [SI are of comparable 
intrinsic accuracy, which is reasonable for long (rr 10 elements) sequences such as those 
encountered here (for shorter sequences, BST would be relatively more reliable than other 
methods [E]). Turning to Bc, one sees a similar improvement in the extrapolated values 
of qs relative to those in table 1. Focusing on the remarkably smooth sequence for the 
square lattice, and taking into account the effect of the uncertainty in pc on the estimates 
of qs as discussed above, we reach the final estimate qs = 0.6664 zk 0.0008. This is entirely 
in agreement with the prediction qs = 213 from conformal invariance [13], and 1; orders 
of magnitude more accurate than previous numerical results 113,171. 

It is known from the exact solution of the king model that finite-size estimates of 
the critical temperature and exponents converge as T&) - T, - L-3; y ( L )  - y - L-* 
(y = U, q )  for PBC [7], while for FBC the corrections are respectively proportional to L-* 
and L-l [19]. For percolation on strips with PBC, numerical evidence is similarly consistent 
with p , (L)  - pc  - L-3 and y p ( L )  - y ,  - L-' [7]. In the present case, the data of tables 

q(L) - q - L-2 (PBC). Though data for the triangular lattice indicate p&) - p c  - L-2 as 
expected, for the square lattice one seems to get fits with the same quality either for o = 1 
or 2, or just about any value in between. We have been unable to sort out this apparently 
discrepant behaviour. 

We have investigated the possible existence of a higher-order critical point, related to 
a surface-assisted transition. Series work indicates that a special transition should not be 
expected for percolation clusters in two dimensions (though in three-dimensional systems 
it should occur) [17,20]. The work described below is a direct test of such results for the 
two-dimensional case. 

As in, for' example, studies of polymer adsorption [IO, 111, a distinct occupation 
probability p .  is introduced for sites on either strip boundary. Fixed points ( p * ,  p:) are 
obtained by comparing correlation lengths on three strips 191: 

1 and 2 point towards the following scenario: y,(L) - y, - L-l, q&) - qs - L-' (FBC); 

(3) 
CL(P*, P:) - L l ( P * ,  P:) ,- 6LL-2(P*. P:) 

L L - i  L - 2  ' 
- - 

By analogy with polymer adsorption, if a special transition occurs it must be at some 
p: z p" so that the critical cluster is located predominantly close to the edge. As pa is 
a bulk quantity, one expects it to converge to pc regardless of whether the transition is 
ordinary or special. By scanning the ( p ,  p s )  space we have ascertained that there is only 
one non-trivial solution of equation (3). which corresponds to an ordinary transition. This 
can be seen from the estimates of critical parameters and respective exponents shown in 
table 3. 

Once again, the smooth convergence of the sequences of estimates of p', y p  and qs 
towards the expected values confirms that our procedures are, on the whole, reliable. That 
the second exponent, ys, is negative ensures that we are dealing with an ordinary critical 
point; our extrapolation is compatible with ys = -1, a result derived on general grounds for 
the ordinary transition of two-dimensional systems [XI. The non-universal p: converges to 
values smaller than the respective pc for each lattice. This resembles the ordinary transition 
for polymers, at which the fugacity for surface contacts is slightly &-enhanced [lo, 11 1. 

With the notable exception of the sequence for p: for the square lattice, the leading 
correction-to-scaling exponent seems to be in the vicinity of 2, or even larger, for all 
quantities involved. At present it is not clear whether this feature is fortuitous or in some 
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Table 3. Results hom two-parameter PR. U n d n t i e s  in ule lasi quoted digits are shown in 
parentheses. Extrawlations obtained by the BST algorithm with correction-loscaling exponent 
o in ranges shown. Expected values are exact, unless otherwise noted. 

5 
6 
7 
8 
9 

10 
Expected 
Extraplated 
0 

0.595 339 0.503680 
0.595215 0.503230 
0.594602 0.500260 
0594148 0.497414 
0593 824 0.494 839 
0593590 0.492552 
0.592745(2)a - 
0.5926(1) 0.460(2) 
2~x4) 0.85(15) 

~ ~ 

0.731343 -1.03326 0.634489 
0.736897 -1.04906 0.635388 
0.740391 -1.04301 0.640568 
0.742624 -1.03692 0.644923 
0.744160 -1.03161 0.648407 
0.745265 -1.M719 0.651 168 
3/4 -1 2/3b 
0.750(2) -1.001(1) 0.666(1) 
2.0(2) 1.9(1) 2.00(5) 

(b) Triangular 
L P* P; Yn YS Ilr 

5 0.503487 ' 0.425365 0.734458 -1.022979 0.844465 
6 0502259 0.421 150 0.741249 -1.027182 0.802242 
7 0501519 0.417782 
8 0.501 064 0.415 120 
9 0.500776 0,413005 

10 0.500~595 0.41 I374 
Expected 1/2 - 
Extrapolated 0.497(2) 0.402(1) 
0 2.0(4) 2.0(1) 

Monte carlo [E]. 
Predicted by conformal invariance [13]. 

0.744379 -1.024663 
0.746083 -1.M1105 
0.747086 -1.017650 
0.747618 -LO13932 
314 -1 
0.750(2) --1.004(3) 
2.0(4) 2.0(4) 

0.777288. 
0.760540 
0.748 374 
0.738967 
U 3 b  
0.680(15) 
2.0(4) 

way related to the structure of the two-parameter PR equations. 
We have shown that the exponent that controls the decay of critical correlations along 

the surface of a semi-infinite percolating plane is q. = 0.6664 f 0.0008, consistent with the 
prediction from conformal invariance qs = 2/3. By setting the site occupation'probability 
p at its critical value pc, clean numerical evidence has been provided that the finite-size 

q(L)  - q - L-' (PBC). It has been shown by numerical examination of suitable two- 
parameter PR recursion relations that no special transition occurs in the case; furthermore, at 
the ordinary critical point the irrelevant exponent is, with all probability, ys = -1 exactly. 

Extensions of the present work to branched polymers (lattice animals) [7] are currently 
being pursued. Though conformal invariance concepts are not applicable in the case 1221, 
snrface critical indices such as the crossover exponent 6 =.ys/y can be calculated and 
compared, e.g.,'to series results 1231, for which error bars are rather large at present. 

The author thanks M Henkel and J L Cardy for interesting conversations, and Departamento 
de Fisica, PUClRJ for use of their computational facilities. This research is supported by 
CNF'q, FJNEP and CAPES. 

estimates of qs and of the bulk exponent q scale respectively as qa(L) - qs - L-* (FECI; 
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