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On the surface properties of two-dimensional percolation
clusters
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Abstract. The two-dimensional site percolation problem is stdied by transfer-matrix methods
on finite-width strips with free boundary conditions. The relationship between correlation-
length amplitudes and critical indices, predicted by conformal invariance, allows a very precise
determination of the surface decay-of-cormelations exponent, s = 0.6664 £ §.0008, consistent
with the analytical value n; = 2/3. It is found that a special transition does not occur in the case,
corroborating earlier series results. At the ordinary transition, numerical estimates are consistent
with the exact value y; = —1 for the imrelevant exponent.

Finite-size scaling concepts are a powerful tool for the determination of critical properties
at phase transitions [1], especially when coupled to phenomenological renormalization [2]
and conformal invariance [3] ideas, Here we present results from numerical transfer-matrix
calculations of the correlation length, and quantities derived therefrom, for site percolation
on infinite strips with free boundary conditions (FBC). The use of FBC allows one to assess
surface critical properties, including so-called special and surface transitions [4] when they
occur,

Our transfer-matrix formulation of the percolation problem relies on the direct
application of connectivity concepts [5], as opposed to taking the s — 1 limit of the s-state
Potts model [6], which corresponds to bond percolation (and should then, by universality,
give the same exponents as for the site problem). While the latter approach benefits from
being a systematic expansion in terms of Whitney polynomials, it is devised for general,
continuous s and thus carries a high degree of inherent complexity. As shown in earlier
work [5,7,8] and below, the geometric picture based on cluster connectivity allows a
straightforward algorithm to be built, from which a nicely extrapolating sequence of finite-
size estimates is extracted. )

We use strips of width L < 10 sites, both for square and triangular Iattices. This is the
same maximum width reached with periodic boundary conditions (PBC) [7, 81, though in the
present case lower symmetry implies that the matrices are of considerably larger dimension
than on a cylindrical geometry. First, standard phenomenological renormalization (PR) [2]
is performed on the site occupation probability p between strips of consecutive widths, from
which estimates of the critical concentration p, the temperature-like exponent y, and the
surface decay-of-correlations exponent, 7, are obtained. Alternative finite-size sequences
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for n; are produced by setting p at the exact (or extrapolated) p.. We then search for a
spectal transition, by introducing a distinct probability p for site occupation along the strip
boundaries. A two-parameter PR analysis is carried out, by comparing correlation lengths
on three strips of consecutive widths [9-11]. Only one non-trivial fixed point, shown to
correspond to an ordinary transition, is found upon numerical examination of the recursion
relations. No evidence is found for the existence of a multicritical point related to a special,
or surface, transition. ‘

The exponent that governs the decay of correlations along the surface of a semi-infinite
plane at criticality, »;, is related to the correlation length on a strip with FBC by

2L
_ 1
50 “

a result from conformal invariance [12,13]. Note that for a triangular lattice with FBC the
strip width L =N ~/3/2, where N is the number of sites across the strip.

Corrections to scaling must be dealt with, since e.g. equation (1) is expected to be
valid only asymptotically. Throughout this work, extrapolations toward L — co have
been done using the Bulirsch—Stoer (BST) algorithm [14,15]. As extensively discussed
elsewhere [15], whenever the leading correction-to-scaling exponent w is not known a priori
BST extrapolations rely on keeping it as a free parameter within an interval guessed to be
reasonable. Central estimates and error bars are evaluated self-consistently by selecting the
range of @ for which overall fluctuations are minimized. In the following we have allowed
045 £ v < 2.4 for all quantities, as the most likely candidates in the case are @ = 1 and
2 (see below).

We implement standard, one-parameter, PR in the usuzal way by looking for the fixed
point p* of the implicit recursion relation:

EL(p™)  Era(p) , o

L Lr-r ' @

where £r(p) = —1/InAp(p) is given in terms of the largest eigenvalue Ar(p) of the

column-to-column transfer matrix [5]; p* is thus a finite-size estimate of p.. At the fixed

point, the temperature-like exponent y, = 1/v is evaluated by taking suitable derivatives [1].
For consistency, 7; is obtained from equation (1) with £ calculated at p*,

Our results are shown in table 1, where the values of p* and y, for L = 3 and 4 on the
square lattice have been obtained previously [5]. The amplitude of finite-size corrections
is much larger than for the corresponding cases of PBC (see e.g. table 1 in [8]). However,
the finite-lattice sequences are generally well-behaved, allowing for smooth extrapolations.
Comparing our extrapolated estimates for p. and y, with the well-known respective values
provides a good overall check of the reliability of our procedures. For the square lattice
our p. agrees very well with, but is less precise than, the best estimate for the percolation
threshold p. = 0.592745£0.000002 [16]. A similar picture holds for the comparison with
the exact p, = 1/2 for the triangular lattice, and y, = 3/4 (both lattices).

Turning now to 75, table 1 provides a direct test of the prediction n; = 2/3 [13],
previously confirmed only indirectly via the series result y1 = 2.10 &£ 0.02 [17] which,
together with the scaling relation 2y = y + {2 — 5;5) and the exact values y = 43/18 and
v = 4/3, gives n; = 0.6440.03 [13] . Though the agreement is generally very satisfactory,
the sequence for the triangular lattice seems to extrapolate towards a region slightly above
23,

In order to improve the quality of our estimates [7, 18], we have also generated
sequences of finite-size data for n; by setting p at the best available (or exact) value of
Pe. For comparison with the corresponding data in [8] for the bulk exponent 7, given by

s

.
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Table 1. Results from one-parameter Pk, Uncertainties in the last quoted digits are shown in
parentheses. Extrapolations obtained by the BST algorithm with correction-to-scaling exponent
@ in ranges shown. Expected values are exact, unless otherwise noted.

Square Triangular
L Pr Yp s p* Yp 1Is

3 0.671130 0.662822 (0.290469 0.573092 0.665596 0.337283
4 Q.644 177 0.676427 (351082 0.547377 0681787 0.393%36
5 0629524 0.686306 0394701 0533471 0.692689 0434325
3 0.620 566 0.693798 0427621 0525062 0700557 0.464391
7 0.614644 0.699685 0433367 0519561 0706500 0.487600
8 0610502 0.704439 0474064 0515749 0.711147 0506047
9 0.607478 0.708362 0491070 0.512920 0.714869 0.521047

i0 0.605 197 0711655 0.505297 0510928 0717880 0.533438

Expected 0.592745(2* 3/4 23 172 374 243b

Extrapotated  0.5925(5) 0.750(2)  0.666(3) 0.5005(2) 07502y  0.676(3)

. w 1.50(50) L1001 1.00(5) 2.00{10) 1.10(10) 1.05(3)

2 Monte Carlo [16].
b Predicted by conformal invariance [13].

Table 2, Results for #s and » obtained by setting p = (.592745 (square} or p = 1/2 (triangular
lattice). Uncertainties in the last quoted digits are shown in parentheses. Exteapolations obtained
by the BST algorithm with correction-to-scaling exponent & in ranges shown. Bxpected values
are exact, unless otherwise noted.

Square Triangular
L Bs n s 1
2 04326951882 02163475941 04673843349 0.2114765825
3 0.4848101732 0.2130595008 05135927770 02111933048
4 05174925026 0.2125576128 0.5423526787 0(.2103549509
5 0.540029 1833 Q.2114673276 05619831315 0.2097409643
6 0.5565576800 02107370714 0.5762429521 0.2093492678
7 0.5692194471 (02102232886 0.5870747896 :0.2090956127
8 0.5752309531 02098564768 = 0.5955841200 02089245599
9 0.5873733739 0.2095868033 06024472809 0.2088045137
10 05941102466 02093833099 0.6081026832 02087173009
Expected 3 524 2/3* 5/24 7
Extrapolated  0.6664(4) 0.20835(2) 0.665(1) 0.20833(2)
@ 1.00(5) 1.90(10) 1.00{10) 2.00(5)

* Predicted by conformal invariance [13].

n = L/m&(pc) [12] (where &, is related to the largest eigenvalue of the transfer matrix
with PBC and, in [8], is calculated at the respective p* as in table 1), we have done the
same for PBC, The results are displayed in table 2.

For the square lattice -the central estimate of p, from [16] has been used. Had the
respective error bars been taken into account, this would typically give rise to uncertainties
in the sixth decimal place of 5, or 7. BST exfrapolations of the truncated values, point
essentially towards the same limits exhibited in table 2 (though with error bars roughly
doubled), which shows that the corresponding sequences are rather robust.

The amplitude of finite-size corrections is much larger for FBC than for PBC, a
trend already noticed in the discussion of table 1. Comparison with the final estimate
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n = 0.2088 £ 0.0008 of {8] suggests that, for PBC at least, setting p = p. rather than at
the approximate p* reduces error bars by one order of magnitude. This latter statement
assumes that both BST and the extrapolation procedures described in [8] are of comparable
intrinsic accuracy, which is reasonable for long (= 10 elements) sequences such as those
encountered here (for shorter sequences, BST would be relatively more reliable than other
methods [15]). Turning to FBC, one sees a similar improvement in the extrapolated values
of 5 relative to those in table 1. Focusing on the remarkably smooth sequence for the
square lattice, and taking into account the effect of the uncertainty in p. on the estimates
of 7, as discussed above, we reach the final estimate n; = 0.6664 = 0.0008. This is entirely
in agreement with the prediction ; = 2/3 from conformal invariance [13], and 1% orders
of magnitude more accurate than previous numerical results 13, 17].

It is known from the exact solution of the Ising model that finite-size estimates of
the critical temperature and exponents converge as T.(L) — T, ~ L™ y(L) —y ~ L2
(y = v, 1) for PBC [7], while for FBC the corrections are respectively proportional to L2
and L~ {19]. For percolation on strips with PBC, numerical evidence is similarly consistent
with pe(L) — po ~ L73 and y,(L) — y, ~ L™ [7]. In the present case, the data of tables
1 and 2 point towards the following scenario: y,(L) — yp, ~ L1, ns(L) — 55 ~ L~ (FBC);
n(L) — n ~ L~2 (pBC). Though data for the triangular lattice indicate p.(L) — p. ~ L~7 as
expected, for the square lattice one seems to get fits with the same quality either for @ = 1
or 2, or just about any value in between. We have been unable to sort out this apparently
discrepant behaviour.

‘We have investigated the possible existence of a higher-order critical point, related to
a surface-assisted transition. Series work indicates that a special transition should not be
expected for percolation clusters in two dimensions (though in three-dimensional systems
it should occur) [17,20]. The work described below is a direct test of such results for the
two-dimensional case.

As in, for example, studies of polymer adsorption [10,11], a distinct occupation
probability p; is introduced for sites on either strip boundary. Fixed points (p*, p¥) are
obtained by comparing correlation lengths on three sirips [9]:

'E:L(P*i P:) — EL—I(.P*: P:) — fL—Z(P,: P:} , (3)
L L-1 = L-2 °

By analogy with polymer adsorption, if a special transition gccurs it must be at some
pr > p* so that the critical cluster is located predominantly close to the edge. As p* is
a bulk quantity, one expects it to converge to p. regardless of whether the transition is
ordinary or special. By scanning the (p, p,) space we have ascertained that there is only
one non-trivial solution of equation (3), which corresponds to an ordinary transition. This
can be seen from the estimates of critical parameters and respective exponents shown in
table 3.

Once again, the smooth convergence of the sequences of estimates of p*, y, and 7,
towards the expected values confirms that our procedures are, on the whole, reliable. That
the second exponent, y;, is negative ensures that we are dealing with an ordinary critical
point; our extrapolation is compatible with y; = —1, a result derived on general grounds for
the: ordinary transition of two-dimensional systems [21]. The non-universal p} converges to
values smaller than the respective p. for each lattice. This resembles the ordinary transition
for polymers, at which the fugacity for surface contacts is slightly de-enhanced [10, 11].

With the notable exception of the sequence for p! for the square lattice, the leading
correctlon-to-scalmg exponent seems to be in the vicinity of 2, or even larger, for all
quantities involved. At present it is not clear whether this feature is fortuitous or in some
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Table 3. Results from two-parameter 8, Uncertainties in the fast quoted digits are shown in
parentheses. Extrapolations obtained by the 83T algerithm with cortection-to-scaling exponent
@ in ranges shown. Expected values are exact, unless otherwise noted.

(a) Square

L P P ¥p ¥s ns

5 0.595 339 0503680 0731343 —1.03326 0634489
6 0.595215 0.503230 0.736897 —1.04906  0.635388
7 0.594 602 0500260 0740391 —1.04301  0.640568
] 0.594 148 0497414 0742624 —1.03692  0.644923
9 0593824 0494839 0744160 —1.03161  0.648407
10 0.593 590 0492552 0745265 —1.02719  0.651168
Expected 059274528 — I -1 273b
Extrapolated  0.5926(1) 0460(2) 07502 —1.001(1)  0.666(1)
o 2.0(4) 0.85(15) 202 1.9¢(1) 2.00(5)
(b) Triangular

L P rs Yo ¥s s

5 0.503 487 0425365 0.734458 —1.022979 0.844465
6 0.502259 0421150 D741249 —1.027182 (.802242
7 0.501519 0417782 0744379 —1.024663 0.777288.
8 0.501 064 0415120 0746081 —1.021105 0.760540
9 0.500776 0413005 0747086 —1.017650 (.748374
10 0.500 595 0411374 0.747618 ~1.013932  (.738967
Expected 1/2 — 34 -1 213k
Extrapolated  0.497(2) 0.402(1)  0750(2) —1.004(3)  D.680(I5)
w 204y 20D 2.0(4) 2.0(4) 2.0(4)

* Monte Carlo [18].
b Predicted by conformal invariance [13).

way related to the structure of the two-parameter PR equations.

We have shown that the exponent that controls the decay of critical correlations along
the surface of a semi-infinite percolating plane is 5, = 0.6664 &= 0.0008, consistent with the
prediction from conformal invariance 7, = 2/3. By setting the site occupation probability
p at its critical value p., clean numerical evidence has been provided that the finite-size
estimates of ns and of the bulk exponent » scale respectively as n;(L) — 15 ~ L™ (FBC);
(L) — n ~ L2 (pBC). It has been shown by numerical examination of suitable two-
parameter PR recursion relations that no special transition occurs in the case; furthermore, at
the ordinary critical point the irrelevant exponent is, with all probability, y; = —1 exactly.

Extensions of the present work to branched polymers (lattice animals) [7] are currently
being pmrsned, Though conformal invariance concepts are not applicable in the case [22],
surface critical indices such as the crossover exponent ¢ = y,/y can be calculated and
compared, e.g., to series results [23], for which error bars are rather large at present.

The author thanks M Henkel and J L Cardy for interesting conversations, and Departamento
de Fisica, PUC/RJ for use of their computational facilities, This research is supported by
CNPq, FINEP and CAPES.
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